SPACE PROPULSION 2018

SEVILLE, SPAIN / 14 – 18 MAY 2018

Propulsion system options for a Potential Sample Return Lander(SRL) for Mars

*David Vaughan, **Barry Nakazono, ***Michael Preudhomme

- *Group Supervisor Propulsion, Jet Propulsion Laboratory, California Institute of Technology Pasadena, Ca
- **Senior Propulsion Engineer, Jet Propulsion Laboratory, California Institute of Technology Pasadena, Ca
 - *** Propulsion Engineer, Jet Propulsion Laboratory, California Institute of Technology Pasadena, Ca

A Notional three mission architecture approach for MSR

Potential Propulsion Options for SRL

- Evaluation based on delta-V need
- If payload < 1200 kg conventional propulsion with parachute
 - Heritage monopropellant
 - Pressure fed throttleable bi-propellant
- If payload >1200 kg Supersonic Retro Propulsion (SRP), no parachute
 - Electrically Driven Pump Fed Propulsion (EDPF)

Monopropellant and Bi-propellant History

Historical View of Monopropellant and Bi-propellant Propulsion Systems

Where is the SOA for Bi-propellant propulsion

SOA performance for Storable Bi-propellant Engines.

EDPF Developments

Case	Propellant	Description
Monopropellant	Hydrazine	Pressure Fed , Regulated helium pressurization and N engines (3500N class) with throttle valves.
EDPF Monopropellant	Hydrazine	Pump Fed , regulated helium pressurization and N engines (3500N) class)
SOA Bi- propellant	NTO/MMH	Pressure Fed, Regulated helium pressurization and N engines with throttle valves
EDPF Bi- propellant	NTO/MMH	Pump Fed, regulated helium pressurization and N engines

Cases considered in Study

Mon-30 EDPF

Examples of Ventions LLC EDPF development

Logical Flow – Overall Program:

Logical Flow – Tank Subroutine:

Logical Flow – Engine Subroutine:

Optimization Choices

- Chamber pressure
- Nozzle Area Ratio
- O/F Ratio
- Cant Angle
- Number of Engines
- Number of Ox Tanks
- Number of Fuel Tanks
- Number of Pressurant Tanks

Predictions Versus Actuals*: -2 ± 8 % difference across all four comparisons

Delta-V Versus System Mass:

References

- Epsilon-Greedy: Kochenderfer, M. J., "Decision Making Under Uncertainty: Theory and Application", MIT Press., 2015
- Test Cases: James R. Wertz & Wiley J. Larson, "Space Mission Analysis And Design", Microcosm Press, Third Edition, 2003